rda objects are created from the klaR package, leveraged to carry out regularized discriminant analysis.
Arguments
- x
A model object.
- verbose
Print information each time an axe method is executed. Notes how much memory is released and what functions are disabled. Default is
FALSE
.- ...
Any additional arguments related to axing.
Examples
library(klaR)
fit_mod <- function() {
boop <- runif(1e6)
rda(
y ~ x,
data = data.frame(y = rep(letters[1:4], 1e4), x = rnorm(4e4)),
gamma = 0.05,
lambda = 0.2
)
}
mod_fit <- fit_mod()
mod_res <- butcher(mod_fit)
weigh(mod_fit)
#> # A tibble: 12 × 2
#> object size
#> <chr> <dbl>
#> 1 terms 8.03
#> 2 call 0.00235
#> 3 covariances 0.000864
#> 4 means 0.00084
#> 5 covpooled 0.000512
#> 6 prior 0.000496
#> 7 regularization 0.000352
#> 8 classes 0.000304
#> 9 error.rate 0.00028
#> 10 varnames 0.000112
#> 11 converged 0.000056
#> 12 iter 0.000056
weigh(mod_res)
#> # A tibble: 12 × 2
#> object size
#> <chr> <dbl>
#> 1 terms 0.00326
#> 2 covariances 0.000864
#> 3 means 0.00084
#> 4 covpooled 0.000512
#> 5 prior 0.000496
#> 6 regularization 0.000352
#> 7 classes 0.000304
#> 8 error.rate 0.00028
#> 9 call 0.000112
#> 10 varnames 0.000112
#> 11 converged 0.000056
#> 12 iter 0.000056