nnet objects are created from the nnet package, leveraged to fit multilayer perceptron models.
Usage
# S3 method for nnet
axe_call(x, verbose = FALSE, ...)
# S3 method for nnet
axe_env(x, verbose = FALSE, ...)
# S3 method for nnet
axe_fitted(x, verbose = FALSE, ...)
Arguments
- x
A model object.
- verbose
Print information each time an axe method is executed. Notes how much memory is released and what functions are disabled. Default is
FALSE
.- ...
Any additional arguments related to axing.
Examples
# Load libraries
library(parsnip)
library(nnet)
# Create and fit model
nnet_fit <- mlp("classification", hidden_units = 2) %>%
set_engine("nnet") %>%
fit(Species ~ ., data = iris)
out <- butcher(nnet_fit, verbose = TRUE)
#> ✔ Memory released: 13.22 kB
# Another nnet object
targets <- class.ind(c(rep("setosa", 50),
rep("versicolor", 50),
rep("virginica", 50)))
fit <- nnet(iris[,1:4],
targets,
size = 2,
rang = 0.1,
decay = 5e-4,
maxit = 20)
#> # weights: 19
#> initial value 112.784345
#> iter 10 value 59.321119
#> iter 20 value 7.905400
#> final value 7.905400
#> stopped after 20 iterations
out <- butcher(fit, verbose = TRUE)
#> ✔ Memory released: 4.95 kB
#> ✖ Disabled: `fitted()`, `predict() with no new data`, and `dimnames(axed_object$fitted.values)`