multnet objects are created from carrying out multinomial regression in the glmnet package.
Usage
# S3 method for multnet
axe_call(x, verbose = FALSE, ...)
Arguments
- x
A model object.
- verbose
Print information each time an axe method is executed. Notes how much memory is released and what functions are disabled. Default is
FALSE
.- ...
Any additional arguments related to axing.
Examples
# Load libraries
library(parsnip)
# Load data
set.seed(1234)
predictrs <- matrix(rnorm(100*20), ncol = 20)
colnames(predictrs) <- paste0("a", seq_len(ncol(predictrs)))
response <- as.factor(sample(1:4, 100, replace = TRUE))
# Create model and fit
multnet_fit <- multinom_reg(penalty = 0.1) %>%
set_engine("glmnet") %>%
fit_xy(x = predictrs, y = response)
out <- butcher(multnet_fit, verbose = TRUE)
#> ✔ Memory released: 128 B