model_fit objects are created from the parsnip
package.
Usage
# S3 method for class 'model_fit'
axe_call(x, verbose = FALSE, ...)
# S3 method for class 'model_fit'
axe_ctrl(x, verbose = FALSE, ...)
# S3 method for class 'model_fit'
axe_data(x, verbose = FALSE, ...)
# S3 method for class 'model_fit'
axe_env(x, verbose = FALSE, ...)
# S3 method for class 'model_fit'
axe_fitted(x, verbose = FALSE, ...)
Examples
library(parsnip)
library(rpart)
# Create model and fit
lm_fit <- linear_reg() %>%
set_engine("lm") %>%
fit(mpg ~ ., data = mtcars)
out <- butcher(lm_fit, verbose = TRUE)
#> ✔ Memory released: 1.46 MB
# Another parsnip model
rpart_fit <- decision_tree(mode = "regression") %>%
set_engine("rpart") %>%
fit(mpg ~ ., data = mtcars, minsplit = 5, cp = 0.1)
out <- butcher(rpart_fit, verbose = TRUE)
#> ✔ Memory released: 1.51 MB