cv.glmnet objects are created from carrying out k-fold cross-validation from the glmnet package.
# S3 method for cv.glmnet axe_fitted(x, verbose = FALSE, ...)
x | A model object. |
---|---|
verbose | Print information each time an axe method is executed.
Notes how much memory is released and what functions are
disabled. Default is |
... | Any additional arguments related to axing. |
Axed cv.glmnet object.
# Load libraries suppressWarnings(suppressMessages(library(glmnet))) # Example 1 n <- 500 p <- 30 nzc <- trunc(p/10) x <- matrix(rnorm(n*p), n, p) beta <- matrix(rnorm(30), 10, nzc) beta <- rbind(beta, matrix(0, p-10, nzc)) f <- x %*% beta p <- exp(f) p <- p/apply(p, 1, sum) g <- rmult(p) set.seed(10101) cvfit <- cv.glmnet(x, g, family="multinomial", keep = TRUE) out <- butcher(cvfit, verbose = TRUE)#> ✔ Memory released: '864,040 B'# Example 2 n <- 1000 p <- 100 nzc <- trunc(p/10) x <- matrix(rnorm(n*p), n, p) beta <- rnorm(nzc) fx <- x[, seq(nzc)] %*% beta eps <- rnorm(n)*5 y <- drop(fx+eps) px <- exp(fx) px <- px/(1+px) ly <- rbinom(n = length(px), prob = px, size = 1) cvfit2 <- cv.glmnet(x, ly, family = "binomial", type.measure = "auc", keep = TRUE) out <- butcher(cvfit2, verbose = TRUE)#> ✔ Memory released: '576,080 B'